La tasa de mortalidad por coronavirus no puede compararse entre países al no tener en cuenta los sesgos en las pruebas

Un test rápido de coronavirus en el coche
Reuters
  • En cada país el índice de mortalidad de personas con COVID-19 varía debido a los factores que se escogen para realizar el recuento.
  • Esto impide comparar las tasas que tienen los diferentes países de forma correcta y sin apenas un elevado margen de error.
  • Por ello, para tener en cuenta los sesgos, una solución que permita un acercamiento a la cifra real es la realización de test aleatorios a la población.
  • Descubre más historias en Business Insider España.

Supongamos que pretendemos hacer una estimación sobre cuántos propietarios de vehículos hay en Reino Unido y, de ellos, cuántos tienen un Ford Fiesta, pero solo disponemos de datos acerca de cuántas personas han visitado exposiciones de novedades de Ford en el último año. Si tenemos en cuenta el sesgo de la muestra, en el caso de que el 10% de los visitantes de exposiciones fueran propietarios de un Fiesta, se produciría una sobreestimación de la proporción de propietarios de Ford Fiesta en todo el país.

La misma línea siguen las estimaciones de los índices de mortalidad de personas con COVID-19. En Reino Unido, sin ir más lejos, casi todas las pruebas se realizan con personas ya hospitalizadas que presentan síntomas de la enfermedad. En el momento en el que se redacta este artículo, hay 29.474 casos confirmados de COVID-19 en Reino Unido (análogos a los propietarios de coches que visitan una exposición), de los cuales han fallecido 2.352 (propietarios de Ford Fiesta que visitaron una exposición). Sin embargo, esta estimación no tiene en cuenta a todas aquellas personas que presentan síntomas leves o, directamente, no los presentan.

Al inferir que el índice de mortalidad del COVID-19 se sitúa en un 8% (2.352 de 29.474), se está ignorando a una gran cantidad de personas que, a pesar de sufrir la enfermedad, no son hospitalizadas ni han fallecido (análogas a los propietarios de vehículos que no visitaron una exposición ni tienen un Ford Fiesta). Es, por lo tanto, un error equivalente al de concluir que el 10 % de todos los propietarios de coches en Reino Unido tienen un Fiesta.

Podemos encontrar ejemplos llamativos de conclusiones de este tipo. El Servicio de Pruebas del COVID-19 de la Universidad de Oxford está trabajando en un exhaustivo análisis estadístico que reconoce sesgos de selección potenciales y añade intervalos de confianza que demuestran la magnitud que podría adquirir el error en la (potencialmente engañosa) proporción de muertes de pacientes positivos en COVID-19.

Leer más: Un tigre de un zoológico de Nueva York da positivo por coronaviurs tras estar en contacto con un cuidador asintomático

El grupo de trabajo destaca varios factores que pueden suponer amplias diferencias entre países. Por ejemplo, el promedio del 8% del “índice de mortalidad” de Reino Unido es una cifra escandalosamente alta comparada con el 0,74% de Alemania. Estos factores incluyen distintas variables demográficas, como el porcentaje de personas de la tercera edad dentro de la población, así como la manera de informar sobre las causas de los fallecimientos. Por ejemplo, en algunos países todas las personas que mueren tras haber sido diagnosticadas COVID-19 son registradas como decesos por dicha enfermedad, aunque no fuera la causa principal, mientras que otras personas pueden morir por el virus que la provoca sin haber recibido un diagnóstico relacionado.

Sin embargo, los modelos estadísticos no incorporan explicaciones causales explícitas que podrían permitir desarrollar inferencias significativas a partir de los datos disponibles, incluyendo la información extraída de los test del virus.

Hemos elaborado un prototipo inicial de un modelo causal cuya estructura se puede apreciar en la imagen de arriba. Las flechas que unen las diferentes variables muestran su interdependencia en un modelo como este.

Estas relaciones, junto con otras variables desconocidas, son consideradas probabilidades. Al introducir la información en forma de variables conocidas y específicas, las probabilidades variables desconocidas son actualizadas empleando un método llamado inferencia bayesiana. El modelo expone el índice de mortalidad del COVID-19 como una función de los métodos de muestreo, análisis e informe, ya que es determinado por el índice de infecciones del grupo de población más vulnerable.

Por lo tanto, resulta sencillo observar diferencias entre los índices de mortalidad de varios países. Esto se debe a que han aplicado políticas de muestreo e información distintas; no necesariamente tiene que obedecer a una mejor o peor gestión del virus o a que este haya infectado a un mayor o menor número de personas.

Con un modelo causal que explique los procesos mediante los cuales se genera la información, podemos comprender con mayor exactitud las diferencias entre países, así como averiguar de forma más precisa el índice real de población infectada y los índices de mortalidad extraídos de los datos de los que disponemos. Este modelo podría ampliarse para incluir factores demográficos, así como la distancia social y otros métodos de prevención. Hemos desarrollado modelos enfocados al tratamiento de problemas similares que, actualmente, se encuentran recabando información con el fin de completar el tipo de modelo (aún en ciernes) que presentamos en la imagen anterior.

Leer más: 10 nuevos síntomas del coronavirus que podrías tener sin saberlo: desde malestar y mareos hasta problemas digestivos

Pruebas aleatorias

Al carecer de un sistema de pruebas que abarque toda la comunidad, la alternativa para acercarnos a las cifras de personas con COVID-19 que son asintomáticas o se han recuperado reside en los análisis aleatorios a la población. Para conocer los índices reales de infección y mortalidad necesitamos saber cuántas personas son asintomáticas. Además, las pruebas aleatorias permitirían averiguar cuál es la eficacia de los test (índices de falsos positivos y falsos negativos).

Así, las pruebas aleatorias se erigen en el método más eficaz para evitar los sesgos de selección y reducir las distorsiones que se aprecian en las estadísticas. Lo ideal, a su vez, sería que las pruebas fueran combinadas con modelos causales.

Actualmente, no parece figurar entre los planes de ningún país el establecimiento de un protocolo estatal para el desarrollo de pruebas aleatorias a la comunidad. España lo intentó, pero se precisaban volúmenes considerables de test rápidos para detectar el COVID-19 y el Gobierno descubrió que algunos de los test llegados de China mostraban una fiabilidad y precisión muy bajas (un 30%), lo que se traducía en abultadas cifras de falsos positivos.

Leer más: El día a día de un paciente con coronavirus dentro del macrohospital levantado en Ifema: "Aquí no sabes si es de día o de noche, si hace sol o nieva"

Países como Noruega han propuesto la implantación de las pruebas aleatorias, pero aún existe cierta incertidumbre en torno a cómo instar legislativamente a los ciudadanos a someterse a las pruebas y de qué manera se podría constituir un protocolo de aleatoriedad apropiado. En Islandia se están llevando a cabo muestreos voluntarios que han cubierto ya al 3% de la población, pero no son aleatorios. Algunos países que gozan de sistemas de pruebas a gran escala se podrían acercar a la aleatoriedad deseada, como es el caso de Corea del Sur.

La razón por la cual resulta tan complicado el desarrollo de pruebas aleatorias se debe a que es necesario tener en cuenta varios factores prácticos y psicológicos. ¿Cómo obtener muestras aleatorias? La colección de muestras procedentes de voluntarios podría no ser suficiente, ya que no evita el sesgo de autoselección.

Durante la pandemia de gripe A de 2009-2010, producida por el virus H1N1, la ansiedad generalizada dio lugar a una enfermedad psicogénica de masas. Este fenómeno se produce cuando la hipersensibilidad a síntomas particulares lleva a que personas sanas se autodiagnostiquen el virus, lo cual significa que mostrarían una especial predisposición a hacerse las pruebas. Esta situación podría, en parte, contribuir a la inflación de los índices de falsos positivos si la sensibilidad y especificidad de los test no se comprende en su totalidad.

Si bien el sesgo de autoselección no puede ser eliminado, podría verse reducido por un trabajo de campo. Esto exigiría la petición de muestras voluntarias a la población de lugares en los que, incluso en cuarentena, se mostrarían dispuestos a someterse a las pruebas. Además, habrían de recogerse también muestras de aquellos individuos que se han recluido en sus casas por voluntad propia.

En cualquier caso, se deberían explicar las limitaciones de las estadísticas al ser expuestas en las comparecencias ante los medios. Y cualquier dato relevante para la población y los individuos que la componen debería ser descrito con precisión. A este respecto, entendemos que se están cometiendo fallos considerables de comunicación en medio de la crisis actual.

Este artículo ha sido publicado originalmente por The Conversation por Norman Fenton, Magda Osman, Martin 
Neil
y Scott McLachlan
Lee el original.

LEER TAMBIÉN: 38 fotos que reflejan cómo han cambiado los lugares más turísticos del mundo con el confinamiento por coronavirus

LEER TAMBIÉN: Sánchez solicita a los presidentes autonómicos una lista de infraestructuras para pacientes con coronavirus sin síntomas

LEER TAMBIÉN: 4 similitudes y 2 diferencias clave entre el crack bursátil de 1929 y la crisis del coronavirus

VER AHORA: Las acciones de Nvidia se han disparado un 31.000% desde su estreno en bolsa: cuánto habrías ganado exactamente si hubieras invertido 1.000 euros el primer día

    Más:

  1. Coronavirus
  2. Estudios
  3. Salud